29 29
I SEE FIRE
PROCEDURAL METHODS FOR IMAGES, TNMO084

Link6ping University

Linnéa MELLBLOM linme&&2

January 16, 2015

1 Introduction

Turbulent phenomenas is interesting and often
pleasant to look at. By this thought the project
took form; to create procedural fire.

2 Goal

The goal with the project is to animate ”realistic”
(as much as it can be) fire in real time. Main goal
is to make it look nice in 2D and if time is enough,
develop and go to 3D instead. The priority is to
make the fire look good, rather then just take it to
3D quiet fast.

The aim is to use different kind of noise functions
to create procedural fire. The implementation is to
be written in WebGL and shaders in GLSL. The
language is chosen to make me learn more and dis-
cover something new, but also to be able to show
the result to a wider range of people.

3 Noise functions

Noise can be generated and manipulated in many
different ways to create visual effects. It is used
to increase the appearance of realism in computer
graphics, since objects do not have a perfect surface
or adding randomness of the structure of a cloud
or a fire.

Classics noise such as Perlin noise, is a gradient
noise which means that a pseudo random gradient
is associated with points that are regularly spaced.
The noise function mainly consist of interpolation
of the closest grid point and their gradients. When
picking the gradients, they need to have enough
variation to conceal the fact that the function is
not truly random. The gradients need to be pseudo
random for the noise function to be repeatable, i.e
always yield the same value for a given input point

2].

To overcome some problems with Perlin noise, Sim-
plex noise was developed with a lower computa-
tional complexity. Most important change are the
simplex grids. The Perlin noise algorithm has a
regular square grid in 2D while simplex grid uses
the simplest and most compact shape that can fill
the space, and therefore in 2D a triangle. This re-
duces the amount of computations since Simplex
noise uses this strategy. Another improvement in-
volves the interpolations in Classic noise along each
dimension. As the dimension increase, the more
complex computations since the computation of the
analytic derivative of the interpolated function. In

Simplex noise a straight summation of contribu-
tions is instead used.

Flow noise is a flow texture that is based on Perlin-
or Simplex noise. Flow noise boils down to two
ideas: rotate the underlying gradients at each grid
point in the noise function, to get a swirling, flow-
ing look and push smaller features away from cen-
ter of large features (as real turbulent flow, a small
swirl appear on a edge of a larger swirl and there-
fore give a more realistic look). The trick is to eval-
uate the sum of different scales and displace the do-
main for the next smaller scale along the gradient
at the evaluated noise function so far. [3]

4 Implementation

This project is written in WebGL and GLSL. This
is due to that is easy to display the result to every-
one and an opportunity for me to learn WebGL a
bit more.

In the project I worked with both flow noise and
simplex noise (short described above). Mainly to
see if there are differences and to be able to expe-
rience more of noise.

The most is written in the fragment shader. Here
I calculate each color that the pixel will have. The
WebGL setup took a while to implement but with
great tutorials the job got easier [I]. The hard part
is to look at the code and understand what it does
at each step. In the vertex shader I only trans-
formed the origin to the left bottom corner and
also mad it possible to add shapes in pixel width
rather then just -1 to 1 as standard.

To be able to get the noise to look like fire, I added
several octaves. Since the program shows 3 differ-
ent fires, everyone has different kind of combina-
tions. The main thing that is common, is that the
frequency is higher in x than y. This due to that
a flame is often higher than wider (or at least that
was what I was aiming at). By taking a higher fre-
quency in x, the denser the pattern will be in x and
therefore it will look like the pattern is higher in

y.

Here below are one example of from one of the func-
tion that generates the fire pattern. The 0.5 defined
the amplitude of the noise. p.z is the position in
X, p.y the position in y and ¢ is the time. The
snoise is using the simplex noise. The frequency
in this case is 16 in x and 4 in y. That will make
the pattern more stretched out in y. Also the time
is added to the y component, which will make the
flames move up. The last argument is 0.3%t, this
argument will make the pattern update (change)
in time.

n = 0.5 % (snoise(vec3 (16.0x
p.x,4.0%p.y+0.6%xt,0.3%xt)));

One crucial point to take in consideration, is that
the when adding different octaves, the different
noise need to be different amplitudes and that the
animation in y is different. This will make the flame
move in different kind of motion and look more like
a turbulent phenomena.

To make a lite more interesting result, I decided
to make some circles (or ellipses) cut out from the
texture depending if the user wants to. In order
to do so,I created a check pattern (how many de-
pending on the user input) and then calculated
a circle (tileCoord.z * tileCoord.z + tileCoord.y *
tileCoord.y) in each of these and then added that
to the fire color.

One important aspect of fire, is when it rise it
should be more perturbed. The fire will fade away
more when it gets higher. Therefore the pertur-
bation depends on the y-value of the texture that
we are rendering on. The higher we are, the more
perturbation we add.

One thing I have just but a little time is that it will
look okay on mobile phones also. So that the can-
vas is depending on the size of the browser.

5 Result and benchmarks

Here are some benchmarks for the project and
the evolving of the fire. It took quiet some time
between these iterations to get to the final re-
sult.

Here I have only showed the iteration of the fire
that used the simplex noise. They have also differ-
ent kind of combination of octaves.

Figure 1:

FEarly version.

Figure 2: Tried different kind of shapes.

Figure 3: When it started to look more like flames.

Figure 4: A snapshot of the final result.

6 Discussion

The use of procedural noise textures for simulation
of a turbulent phenomena provides a highly cus-
tomizable animation framework. The appearance
of the fire are determined by only a few parameters
like frequency, amplitude and how much the fire
should flicker. If time is spent on these variables
and tweaking, the texture can resemble fire quiet
well. But, by for example using the flow noise, it
is possible to define flows that do not resemble any
true fluid at all if the variables is combined in some
ways.

It took quiet some time to tweak these variables
and I could easily continued much further. It is
hard to say that now have I reached to a point
where I am fully satisfied. In the beginning I
thought that it should not take that long to ac-
tually find the "right” variables and combinations,
but further in the project i realized that I needed
to focus on just the 2D fire and leave the 3D to
a project later on instead. Since the result should
resemble fire quiet well, I chose to take the time on
the variables instead. So sometimes it will not look
like much code, but instead it is very much time
spent on these variables and combination. I have
spent several hours on adding different frequencies,
mixed different noises and so on.

The color of the fire was hard to get right and
I think i have not nailed it yet. These are also
some variables that can be tweaked until you get
a near perfect result. Eventually I stuck with the
variables that I have and said that this was fairly
good.

By using both Simplex noise and Flow noise, I must
say that I think that Simplex noise was easier to get
a good result with. Flow is nice, but a bit harder to
actually look good. By only accidentally changing
one variable, the result could be unexpected and
not resemble any true fluid at all. You had to be
more careful when assigning variables and adding
different frequencies together.

I am almost happy with my result. I can put sev-
eral hours more on this and it is hard to know when
to stop and say that you are finished. Maybe I put
to much time on the tweaking of variables, instead
of getting it to 3D. But that is hard to say if it had
been a better result from there.

The best result in my opinion, is when you use Sim-
plex 1, cut out circle of three in width and two in
length. Sadly, some combination will make the fire
look more terribly. But that only shows that with
only a few variables changing, the whole result can
look different.

Since I not have worked so much in WebGL before
that was a new challenge. With some tutorials I

could pick out the important stuff and modify so
that it would fit my purpose; things like how to
send variables to the fragment shader, how to add
object and so on.

From this project I have learned a lot. Not only
WebGL but also how to think when starting from
scratch. The most fun thing with these kind of
programming, is that it is very fun to see the re-
sult. When you change code you will get a vi-
sual feedback directly (often at least) which is very
fun.

7 Future work

Major area of improvement is parameter tweaking.
Even if T have put several hours here, you could
always find something better. The color is also on
thing that I would want to look a little bit more
closer at.

One thing I really would have done, and I hope-
fully will do in the future, is to take this to 3D by
using ray marching. By taking it to 3D I hope that
it will make the animation look even more realistic
than it does today.

References

[1] WebGL Tutorials http://learningwebgl.
com/blog/?page_id=1217

[2] Stefan Gustavson. Simplex noise demystified.
2005. http://webstaff.itn.liu.se/~stegu/
TNM084-2014/simplexnoise.pdf

[3] Short about Flow Noise http://webstaff.
itn.liu.se/~stegu/aqsis/flownoisedemo/
README. txt

[4] Procedural Textures in GLSL
//webstaff.itn.liu.se/~stegu/
TNM084-2014/proceduraltextures.pdf

[6] WebGL Fundementals, clipspace
//www.htmlbrocks.com/en/tutorials/
webgl/webgl_fundamentals/

http:

http:

[6] Fire in HLSL, algorithmic how to generate
fire http://www.rastertek.com/dx10tut33.
html

[7] WebGL Reference
www .khronos.org/files/webgl/
webgl-reference-card-1_0.pdf

https://

[8] David S. Ebert, F. Kenton Musgrave, Darwyn
Peachey,Ken Perlin, and Steven Worley. Tex-
turing and Modeling: A Procedural Approach.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 3rd edition, 2002.

http://learningwebgl.com/blog/?page_id=1217
http://learningwebgl.com/blog/?page_id=1217
http://webstaff.itn.liu.se/~stegu/TNM084-2014/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/TNM084-2014/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/aqsis/flownoisedemo/README.txt
http://webstaff.itn.liu.se/~stegu/aqsis/flownoisedemo/README.txt
http://webstaff.itn.liu.se/~stegu/aqsis/flownoisedemo/README.txt
http://webstaff.itn.liu.se/~stegu/TNM084-2014/proceduraltextures.pdf
http://webstaff.itn.liu.se/~stegu/TNM084-2014/proceduraltextures.pdf
http://webstaff.itn.liu.se/~stegu/TNM084-2014/proceduraltextures.pdf
http://www.html5rocks.com/en/tutorials/webgl/webgl_fundamentals/
http://www.html5rocks.com/en/tutorials/webgl/webgl_fundamentals/
http://www.html5rocks.com/en/tutorials/webgl/webgl_fundamentals/
http://www.rastertek.com/dx10tut33.html
http://www.rastertek.com/dx10tut33.html
https://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
https://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
https://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf

	Introduction
	Goal
	Noise functions
	Implementation
	Result and benchmarks
	Discussion
	Future work

